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ABSTRACT

Quasi-periodic pulsations (QPPs), which carry time features and plasma characteristics of

flare emissions, are frequently observed in light curves of solar/stellar flares. In this paper,

we investigate non-stationary QPPs associated with recurrent jets during an M1.2 flare on

2022 July 14. A quasi-period of ∼45±10 s, determined by the wavelet transform technique, is

simultaneously identified at wavelengths of soft/hard X-ray and microwave emissions, which are

recorded by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor,

Fermi, and the Nobeyama Radio Polarimeters, respectively. A group of recurrent jets with an

intermittent cadence of about 45±10 s are found in Atmospheric Imaging Assembly (AIA) image

series at 304 Å, but they are 180-s earlier than the flare QPP. All observational facts suggest

that the flare QPP could be excited by recurrent jets, and they should be associated with

nonthermal electrons that are periodically accelerated by a repeated energy release process,

like repetitive magnetic reconnection. Moreover, the same quasi-period is discovered at double

footpoints connected by a hot flare loop in AIA 94 Å, and the phase speed is measured

to ∼1420 km s−1. Based on the differential emission measure, the average temperatures,

number densities, and magnetic field strengths at the loop top and footpoint are estimated to

∼7.7/6.7 MK, ∼7.5/3.6×1010 cm−3, and ∼143/99 G, respectively. Our measurements indicate

that the 45-s QPP is probably modulated by the kink-mode wave of the flare loop.

Keywords: Sun: flares, Sun: oscillations, Sun: UV emission, Sun: X-ray emission, Sun: radio emission, MHD waves

1 INTRODUCTION

Quasi-periodic pulsations (QPPs) observed in solar/stellar flares usually appear as temporal intensity

oscillations of electromagnetic radiation (see, Kupriyanova et al., 2020; Zimovets et al., 2021b, and

references therein). They are frequently identified as a series of repetitive but irregular pulsations with

anharmonic and symmetric triangular shapes, referring to non-stationary QPPs (e.g., Nakariakov et al.,

2019). The observation of QPPs has been reported in flare time series over a broad range of wavelengths,
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ranging from radio/microwave emissions through ultraviolet (UV) and white light wavelengths to soft

and hard X-rays (SXR/HXR) channels, and even in the γ-ray emission (e.g., Nakariakov et al., 2010a;

Tan et al., 2016; Milligan et al., 2017; Li et al., 2017b; Kashapova et al., 2021; Kolotkov et al., 2021;

Lu et al., 2021; Doyle et al., 2022; Smith et al., 2022; Zhang et al., 2022a). Generally, a typical QPP

should be at least three successive and complete pulsations. There is not reason to talk about the QPP

behavior if there are only one or two pulsations, which might be just a coincidence, for instance, the

similar time interval between successive pulsations occurred by chance (Nakariakov et al., 2019). The

characteristic time of all pulsations in one QPP event is expected to be same, which can be regarded as the

period. However, the characteristic time of these pulsations could be varied, indicating the irregular nature

of flare QPPs. Thus, they often show the variation of quasi-periods (e.g., Nakariakov et al., 2018). In

observations, the quasi-periods of flare QPPs are found to vary from a fraction of seconds to a few dozens

of minutes (Tan et al., 2010; Yuan et al., 2013; Ning, 2014; Mészárosová et al., 2016; Kolotkov et al.,

2018; Hayes et al., 2020; Karlický et al., 2020; Hong et al., 2021; Bate et al., 2022).

It has been accepted that the quasi-periods of flare QPPs are often related to their generation

mechanisms (Kupriyanova et al., 2020). The short-period (i.e., <1 s) QPPs, which are usually observed

in radio/microwave emissions, are often driven by the dynamic interaction between plasma waves

and energetic particles in complex magnetic structures (Nakariakov et al., 2018; Yu and Chen, 2019;

Karlický et al., 2020). The flare QPPs with long periods in the order of seconds and minutes, which

could detect in almost all wavelengths, are frequently interpreted in terms of magnetohydrodynamic

(MHD) waves in slow modes (e.g., Wang et al., 2021), kink modes (e.g., Nakariakov et al., 2021), and

sausage modes (e.g., Li et al., 2020a). In such case, the flare QPPs with periods larger than 1 minute

could be associated with slow sausage waves (Sadeghi and Karami, 2019; Gao et al., 2021), global

kink waves (Duckenfield et al., 2019; Gao et al., 2022), and slow magnetoacoustic waves (Wang, 2011;

Ofman et al., 2012; Yuan et al., 2015; Prasad et al., 2022); while those with periods in the order of

seconds are often explained as fast sausage or kink waves (Inglis and Nakariakov, 2009; Guo et al., 2021;

Kashapova et al., 2021), depending on whether the plasma loop can be compressible or incompressible

(Yuan and Van Doorsselaere, 2016; Nakariakov and Kolotkov, 2020). Those long-period QPPs might

be also associated with the repetitive magnetic reconnection (Thurgood et al., 2019; Karampelas et al.,

2022). The idea is that the released energy via intermittent magnetic reconnection is repeated, which

can periodically accelerate nonthermal electrons. Thus, it is often used to explain the QPPs seen in

the impulsive phase of solar flares (e.g., Yuan et al., 2019; Li et al., 2021). Moreover, this reconnection

process could either be spontaneous such as ‘magnetic dripping’ (e.g., Nakariakov et al., 2010b) and

‘magnetic tuning fork’ (e.g., Takasao and Shibata, 2016), or it might be triggered by an external MHD

wave (Foullon et al., 2005; Nakariakov et al., 2018).

Solar jets, which often show columnar and beam-like structures, are usually associated with solar

flares, type III radio bursts, and filament eruptions (Shibata et al., 2007; Shen et al., 2011; Paraschiv et al.,

2015; Raouafi et al., 2016). They can be observed everywhere on the Sun, such as active regions, quiet-

Sun regions, and coronal holes (Brueckner and Bartoe, 1983; Shen, 2021). The recurrent jets, which

always reveal ejected plasmas repeatedly and have the same base source (Tian et al., 2018; Lu et al.,

2019), become a topic of particular interest because they could be associated with flare QPPs (Ning et al.,

2022; Shi et al., 2022), fast-mode EUV waves and quasi-periodic fast-propagating (QFP) magnetosonic

waves (Shen et al., 2018d,a). The observed QFP waves often consist of multiple concentric and coherent

wavefronts, termed as ‘QFP wave trains’, and they are produced successively within periods of dozens of

seconds or a few minutes near the epicenter of the accompanying flares (Shen et al., 2022b,a). Sometimes,

the quasi-periods of QFP wave trains are quite similar to those of associated flare QPPs, implying that
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the two different phenomena might manifest the two different aspects of the same physical process,

i.e., the pulsed energy release via repeating magnetic reconnection (Liu et al., 2011; Shen and Liu, 2012;

Shen et al., 2013, 2018b; Kolotkov et al., 2018; Zhou et al., 2022). On the other hand, some quasi-periods

of QFP wave trains are completely unassociated with those of flares QPPs, indicating that the periodicity

of QFP wave trains is diverse and could not be associated with flare QPPs (Shen et al., 2018c, 2019).

Therefore, the relationship between flare QPPs and QFP wave trains still needs in-depth investigation

(Shen et al., 2022b).

The observed QPPs could provide the time feature and plasma characteristic of flare emissions, which

are helpful for diagnosing plasma properties on the Sun or Sun-like stars, especially at the flare location

(Pugh et al., 2019; Zimovets et al., 2021b). When considering that flare QPPs are modulated by MHD

waves, they might potentially lead to coronal heating through dissipating of those waves (Reale et al.,

2019; Van Doorsselaere et al., 2020; White and Verwichte, 2021; Li et al., 2022). Moreover, they can

allow us to map coronal magnetic fields and estimate plasma parameters in the corona, named as ‘coronal

seismology’ (e.g., Yang et al., 2020; Anfinogentov et al., 2022). In this paper, we report multi-wavelength

observations of the flare QPP associated with recurrent jets, and the flare QPP is also found at two opposite

footpoints connected by a hot flare loop seen in AIA 94 Å images. Our measurements suggest that the

flare QPP could be interpreted as kink-mode MHD wave of the flare loop.

2 OBSERVATIONS

On 2022 July 14, a solar flare occurred in the active region NOAA 13058 (N15E81), which was close to

the solar limb and erupted after a group of recurrent jets. It was simultaneously observed by several

space-based telescopes, such as the Geostationary Operational Environmental Satellite X-ray Sensor

(GOES/XRS; Hanser and Sellers, 1996), the Fermi Gamma-ray Burst Monitor (GBM; Meegan et al.,

2009), the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM;

Xiao et al., 2022), the Atmospheric Imaging Assembly (AIA; Lemen et al., 2012) and the Extreme

Ultraviolet Variability Experiment (EVE; Woods et al., 2012) on board the Solar Dynamics Observatory

(SDO; Pesnell et al., 2012), and the ground-based radio telescope, i.e., the Nobeyama Radio Polarimeters

(NoRP; Nakajima et al., 1985), as seen in Table 1 and Figure 1. It should be pointed out that all light

curves expected for GOES have been multiplied by a factor, so that they can be well displayed in a same

window.

GOES/XRS (Hanser and Sellers, 1996; Loto’aniu et al., 2017) is used to monitor the full-disk solar

irradiance at SXR channels with a time cadence of 1 s, particularly for monitoring the flare emission,

as shown by the black line in Figure 1 (A). According to the GOES 1−8 Å flux, the solar flare was

identified as an M1.2 class, it began at ∼04:22 UT, reached its maximum at about 04:31 UT, and stopped

at ∼04:40 UT. The gold line shows the derivative flux at GOES 1−8 Å. The EUV SpectroPhotometer

(ESP; Didkovsky et al., 2012) for SDO/EVE could also provide the SXR flux at 1−70 Å with a time

cadence of 0.25 s, as indicated by the red line. The SXR light curves observed by GOES and ESP match

well with each other, and they both appear double peaks before the onset time of the M1.2 flare, i.e., from

04:16 UT to 04:20 UT, as indicated by the black arrow. They might be a candidate of the flare precursor.

Fermi/GBM can provide the solar irradiance that is integrated over the whole Sun at both SXR and HXR

channels. The temporal cadence is commonly 0.256 s, but it becomes 0.064 s automatically during solar

flares (Meegan et al., 2009). Thus, we first interpolate them into an uniform temporal resolution of 0.256 s

before analysing and such temporal resolution is sufficient to study the flare QPP with a quasi-period

of tens of seconds (cf. Li et al., 2015; Ning, 2017). Figure 1 (A) draws the Fermi/GBM light curve at
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11.5−102.4 keV, as shown by the cyan curve, which is measured by the n5 detector. GECAM is designed

to detect and localize high-energy transients, such as Gamma-ray bursts and solar flares. It consists of 25

gamma-ray detectors (GRDs), which are used to detect the X-ray and γ-ray radiation (Xiao et al., 2022).

Figure 1 (A) shows the solar flux at 25−120 keV (blue) during the M1.2 flare with an uniform temporal

cadence of 0.5 s, the GRD numbers and their averaged incident angles for each GRD used in this study

are listed in Table 2. Both Fermi/GBM and GECAM/GRD light curves appear double peaks between

about 04:16 UT and 04:20 UT, similarly to what have seen in SXR fluxes recorded by GOES/XRS and

SDO/EVE/ESP.

The M1.2 flare was also observed by NoRP at the radio/microwave emission with a temporal cadence

of 1 s, as shown by the magenta line in Figure 1 (A). It matches well with the GOES 1-8 Å derivative flux,

indicating the Neupert effect during the M1.2 flare (cf. Neupert, 1968). The microwave flux also reveals

several successive sub-peaks during the flare impulsive phase, similarly to what observed in the Fermi

(cyan) and GECAM (blue) light curves, which could be regarded as QPPs. On the other hand, we do not

see the small peak before the M1.2 flare in the NoRP light curve. So, it is impossible to determine a flare

precursor here. Fortunately, SDO/AIA can provide full-disk spatial-resolved maps in seven EUV and two

UV wavelength bands. The spatial scale for each AIA map is 0.6′′ per pixel, and the temporal cadence

is 12 s for EUV maps. Before analysing, all the AIA maps have been preprocessed by ‘aia prep.pro’

(Lemen et al., 2012). Figure 1 (B-C) presents AIA maps with a sub-field of about 90′′×90′′ at 304 Å and

94 Å, respectively. A group of jets can be seen in the AIA 304 Å map (see also the animation.mp4), as

outlined by two cyan lines. In order to cover the bulk of these jets as much as possible during their lifetime,

we used a constant width of about 15′′. The base of jets is close to one flare ribbon in AIA 304 Å maps.

A post flare loop can be seen in the AIA 94 Å map, and two pairs of magenta lines with a width of about

3′′ are used to outline double footpoints (or loop legs). Finally, the light curve at AIA 94 Å is integrated

from the flare region, as indicated by the green line in Figure 1 (A). We can not see the small peak during

∼04:16−04:20 UT before the flare onset. Thus, we can conclude that the small double peaks (indicated by

the black arrow) in SXR/HXR channels are not identified as the flare precursor (e.g., Dudı́k et al., 2016;

Benz et al., 2017; Yan et al., 2017; Li et al., 2018a, 2020b)

3 RESULTS AND DISCUSSIONS

3.1 Multi-wavelength observations of flare QPP

The small double peaks before the M1.2 flare seen in SXR/HXR fluxes can not be regarded as

the flare precursor, because they are not homologous with the flare source, as shown in Figure 1.

Herein, only the successive sub-peaks seen in HXR and microwave emissions during the flare impulsive

(i.e., ∼04:27−04:32 UT) are investigated in this study. Figure 2 presents HXR light curves at

GECAM 25−120 keV (black), Fermi 11.5−26.6 keV (magenta) and 26.6−102.4 keV (cyan). They

appear to be characterized by several small-amplitude sub-peaks superimposed on the large-amplitude

pulse. These sub-peaks with small amplitudes are successive and could be regarded as QPPs, while the

main pulse with the large amplitude can be regraded as a strong background trend. The vertical lines

indicate seven sub-peaks from roughly 04:27:50 UT to about 04:32:20 UT, and the average duration is 45 s,

corresponding to a quasi-period of 45 s. We also note that some sub-peaks might be not very clear in the

raw light curve, largely due to their small amplitudes. Using a smooth window of 60 s (Nakariakov et al.,

2010a; Yuan et al., 2011; Li et al., 2015; Li and Chen, 2022), the raw light curve is decomposed into two

components: a rapidly varying component (QPP) plus a slowly varying component (background). Thereby,

the shorter-period oscillation (i.e, 45-s QPP) is enhanced, while the long-period background trend is

suppressed (see Kupriyanova et al., 2010; Gruber et al., 2011; Auchère et al., 2016, for the discussion of
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this method). The overplotted blue dashed lines represent the slowly varying components, and the rapidly

varying components are shown in panel (B). Obviously, the rapidly varying components are dominated

by the QPP feature, i.e., some repetitive but irregular pulsations, as marked by the vertical lines. They

match well with the successive sub-peaks seen in the raw light curves, indicating that the smooth method

only enhance the short-period oscillation, but does not change it. Therefore, these repetitive but irregular

pulsations could regard as the signature of non-stationary QPPs (cf. Nakariakov et al., 2019), and they

can not be the artifact of smoothing (cf. Li et al., 2021). Here, the modulation depth of flare QPPs, which

is regarded as the ratio between rapidly varying components and the maximum value of slowly varying

components, are roughly equal to 10%−25%. This result is consistent with previous findings for flare

QPPs in HXR emissions (e.g., Nakariakov et al., 2010a; Li and Chen, 2022).

Next, the Morlet wavelet analysis method is applied to the rapidly varying components at

Fermi 11.5−26.6 keV and GECAM 25−120 keV, as shown in Figure 3. Based on the Parseval’s

theorem for wavelet analysis (Torrence and Compo, 1998), the wavelet power has been normalized, which

could provide the conservation of total energy signals under the wavelet transform, and then obtained a

distribution of the spectral power across wavelet periods. Panels (A1) and (B1) show the wavelet power

spectra, and they both exhibit an enhanced power over a wide range in almost the same time interval from

about 04:27:50 UT to 04:32:20 UT, indicating a flare QPP within large uncertainties. The bulk of power

spectrum (at the confidence level of 99%) is dominated by a quasi-period centered at ∼45 s. The dominant

period of ∼45 s is confirmed by the global wavelet power spectrum, as shown in panels (A2) and (B2).

From which, a significant peak at about 45 s is seen in the global wavelet power spectrum. On the other

hand, the period uncertainty of ±10 s could be determined by the full width at half maximum value of the

peak global power above the 99% confidence level (as performed by Yuan et al., 2011; Tian et al., 2016;

Li et al., 2020c).

The flare QPP with a quasi-period of about 45±10 s is seen in the HXR radiation observed by Fermi

and GECAM. However, the Fermi flux at 11.5−26.6 keV might consist of SXR and HXR components. In

order to know if the flare QPP could be found in the SXR emission, we then perform the Morlet wavelet

analysis on SXR light curves at GOES 1−8 Å and ESP 1−70 Å, as shown in Figure 4. Panels (A1) and

(B1) present the raw SXR light curves (black) and their slowly varying components (dashed blue) after

applying a smooth window of 60 s. It should be pointed out that the slowly varying components have been

multiplied by 0.95 to avoid overlap with the raw light curves (cf. Ning et al., 2022). Panels (A2) and (B2)

plot the corresponding rapidly varying components, which are characterized by a series of successive

pulsations. The modulation depth of SXR radiation is only about 0.4%−0.6%, which is much smaller

than that of HXR emissions. This is consistent with previous observations, for instance, the flare SXR

emission often reveals the small-amplitude oscillation, while the HXR QPP usually has a large amplitude

(e.g., Nakariakov et al., 2010a; Ning, 2017; Li et al., 2020d; Ning et al., 2022). Panels (A3) and (B3) show

the Morlet wavelet power spectra of rapidly varying components. They both reveal an enhanced power

at the period center of about 45 s over a time interval from roughly 04:27 UT to 04:31 UT, suggesting a

dominant period of ∼45 s, similarly to what observed in HXR QPPs.

Figure 5 presents the Morlet wavelet analysis on radio fluxes at frequencies of NoRP 2 GHz (A1-A3) and

3.75 GHz (B1-B3). Using the same smooth window of 60 s, the raw light curves (black) are decomposed

into slowly (dashed blue) and rapidly varying components (A2-B2). The modulation depth of radio QPPs

is estimated to about 1%−2%, which is larger than that of SXR QPPs, but is still smaller than that of

HXR QPPs. We also note that only 3 or 4 successive pulsations appear in radio fluxes, which are less

than that in HXR fluxes. On the other hand, a same quasi-period centered at ∼45 s is seen in the wavelet
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power spectrum, which agrees with the 45-s QPP observed by Fermi, GECAM, GOES and EVE/ESP.

The same quasi-period of 45 s is simultaneously detected in SXR, HXR, and microwave emissions during

the impulsive phase of the M1.2 flare, suggesting that the 45-s QPP seen at multiple wavelengths should

originate from a same process of energy release, i.e., the repetitive magnetic reconnection.

The flare QPP could be observed at multiple wavelengths of HXR, SXR, and microwave emissions,

suggesting that the 45-s QPP simultaneously appear in both the nonthermal and thermal emissions.

In other words, the nonthermal and thermal processes could be coexisted during the M1.2 flare (e.g.,

Warmuth and Mann, 2016; Li et al., 2020c; Ning et al., 2022). The 45-s QPP observed in the thermal

emission at SXR wavelengths may share the same origin as the QPP feature seen in the nonthermal

emission at HXR and microwave channels. The M1.2 flare showed the Neupert effect (Figire 1), which

is a plasma heating via energy releasing through electron beams (Neupert, 1968; Ning, 2008, 2009).

The flare QPP observed at multiple wavelengths is most likely to be associated with the nonthermal

process, i.e., the periodically accelerated electron beams via the repetitive magnetic reconnection (e.g.,

Li et al., 2021; Karampelas et al., 2022). The idea is that the released energy via periodic reconnection

could periodically accelerate electron beams, producing repetitive HXR and microwave pulsations in the

solar corona. Meanwhile, the repeated SXR pulsations are periodically generated by plasma heating after

magnetic reconnection (see Zimovets et al., 2021b, for a recent review).
3.2 Recurrent jets associated with flare QPP

Figure 1 (B) and the animation.mp4 show that a group of plasma ejections during the M1.2 flare. They

manifest as collimated and beam-like structures in AIA 304 Å, which could be identified as ‘solar jets’

(e.g., Shen, 2021). To look closely the jet eruptions and periodicity, we draw the time-distance image

along the slit of S1 that is made from AIA 304 Å image series, as shown in Figure 6 (A). Here, the slit

is selected to be a constant width of about 15′′, and thus it can cover the bulk of jet bodies as much as

possible. A series of solar jets can be seen in the time-distance image, and their apparent speed is estimated

to about 110−300 km s−1, as indicated by the blue arrows. A total of nine jets are found during the time

interval of about 450 s, and the average intermittent cadence is roughly equal to 50 s. Such intermittent

cadence is quite close to the quasi-period of the flare QPP, implying that those jets occur periodically.

Then the intensity variation integrated over two short cyan lines is overplotted, as shown by the cyan line.

The intensity curve seems to reveal several sub-peaks corresponding to solar jets. However, it is hard to

show a one-to-one correspondence, mainly due to the small-amplitude sub-peaks superimposed on the

strong background emission. Therefore, the slowly (dashed green) and rapidly varying components are

distinguished with the smooth window of 60 s, and the Morlet wavelet analysis is applied to the rapidly

varying component. Panels (B) and (C) show the Morlet wavelet power spectrum and its global wavelet

power spectrum. They both reveal a period centered at about 45 s, confirming that the recurrent jets are

associated with flare QPPs. Moreover, the recurrent jets appear to start at about 04:24:50 UT, which are

∼180-s earlier than the flare QPP. Our observation suggest that the flare QPP could be excited by these

recurrent jets.

Previous findings (e.g., Reid et al., 2012; Shen et al., 2012; Lu et al., 2019) found that solar jets were

always accompanied by solar flares, coronal bright points, or filament eruptions. Recent observations also

showed that solar jets triggered by a solar flare had repetitive and regular occurrences with a period of

about 72 s, but they did not find the similar quasi-period between flare QPPs and recurrent jets (Ning et al.,

2022). The same quasi-period of about 60 s was also discovered both in flare QPPs and recurrent jets,

and they took place almost simultaneously (Shi et al., 2022). However, it is impossible to conclude that

whether these recurrent jets have affected the flare QPP or they are just the result of the flare QPP (cf.
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Ning et al., 2022). In our study, a same quasi-period of 45 s is observed in both the flare QPP and recurrent

jets, and the onset time of these recurrent jets are ∼180-s earlier than the beginning of flare QPP. Based on

these observational facts, we may infer that the flare QPP seen in the SXR/HXR and microwave emissions

is probably excited by recurrent jets. The associated video (animation.mp4) shows that the eruption of the

first jet is like a mini-filament-driven jet very much, indicating that the recurrent jets could be driven by

the eruption of mini-filaments that is associated with magnetic reconnection (Sterling et al., 2020; Shen,

2021). Thus, both the recurrent jets and the accompanying flare QPP could be associated with the magnetic

reconnection that is modulated by some periodic processes.
3.3 Geometric and differential emission measure analysis

The flare QPP observed in SXR, HXR and microwave emissions could be excited by a group of

recurrent jets with the same intermittent cadence, and they are most likely to be associated with a

nonthermal process, i.e., electron beams periodically accelerated by the repetitive magnetic reconnection

(e.g., Yuan et al., 2019; Li et al., 2021; Karampelas et al., 2022). In order to further know whether

the quasi-period of 45-s is modulated by an external MHD wave (e.g., Foullon et al., 2005; Li et al.,

2015; Nakariakov et al., 2018), or it is only a self-oscillating process (e.g., Nakariakov et al., 2010b;

Takasao and Shibata, 2016), we perform the geometric and differential emission measure (DEM) analysis

for the M1.2 flare, as shown in Figures 7 and 8.

Figure 7 (A1-B1) present time-distance diagrams at AIA 94 Å along two slits (S2 and S3) in Figure 1 (C),

and the magenta symbols (‘∗’) mark their start points. Here, the slits are selected to cross two opposite

footpoints of the flare loop, but they are not cross the loop top. Because there are much more saturated

pixels at loop top than those at footpoints (see also the animation.mp4). In the two time-distance diagrams,

it does not see any signatures of displacement oscillations that are perpendicular to loop legs. However,

they appear clearly signatures of brightness variations at double footpoints, as outlined by two short

magenta lines. Thus, the normalized light curves at AIA 94 Å, which are integrated intensities between

two short magenta lines, are overplotted in corresponding time-distance diagrams, as shown by the solid

magenta curves. Similar to the microwave flux, at least four sub-peaks are found to superimpose on the

background emission, as indicated by the gold vertical lines, which are less than those in HXR fluxes. They

appear as non-stationary QPPs, for instance, each pulsation is mainly characterized by an anharmonic

and triangular shape (e.g., Nakariakov et al., 2019). Using the same smooth window of 60 s, the slowly

(dashed red) and rapidly varying components are distinguished from the raw light curves. Panels (A2-B2)

show Morlet wavelet power spectra of the rapidly varying components at AIA 94 Å. They both reveal an

enhanced power at the period center of about 45 s from around 04:27:50 UT to 04:30:05 UT, suggesting a

dominant period of ∼45 s, similarly to what observed in SXR/HXR and microwave emissions. Panel (C)

presents the cross-correlation analysis (e.g., Tian et al., 2016) between two rapidly varying components in

AIA 94 Å at double footpoints, the maximum correlation coefficient of 0.74 is seen at the time lag of 0 s,

as indicated by the vertical line. This observational result suggest that the flare QPP at double footpoints

is in phase.

Figure 8 shows the DEM analysis result. It is calculated from six EUV-wavelength observations

measured by SDO/AIA. The DEM(T ) distribution for each pixel is estimated by an improved sparse-

inversion code (Cheung et al., 2015; Su et al., 2018b), and the DEM(T ) uncertainty can be estimated

from 100 Monte Carlo (MC) simulations, for instance, the three times of standard deviations of 100 MC

simulations (3δ). Panel (A) presents the EM map integrated in the temperature range of 0.31−20 MK.

Similar to the AIA 94 Å map, a post-flare loop can be seen in the EM map. Then, three small regions

(cyan boxes) with a FOV of about 1.8′′×1.8′′ are selected to display DEM profiles, and they are located
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at the non-flare region (or coronal background, p1), loop-top region (p2), and one footpoint (p3),

respectively. Panels (B-D) draw DEM profiles as the function of temperature, and the error bars represent

their uncertainties, i.e., 3δ. The EM and DEM-weighted mean temperature (Te) are calculated in the

temperature range between 0.31−20 MK, as labeled in each panel. It can be seen that both the EM and Te
at the loop top are higher than that at the footpoint, and thus loop-top region is more saturated. The Te is

estimated to ∼7.7 MK (C) at the loop top and ∼6.7 MK (D) at the footpoint, which is consistent with that

the post-flare loop is most visible at AIA 94 Å (T≈6.3 MK). At the non-flare region, the Te is ∼1.8 MK

(B), which is roughly equal to quiet coronal temperature.
3.4 MHD explanation and Coronal seismology

Based on the AIA 94 Å map and EM map in Figures 1 (C) and 8 (A), the distance between two footpoints

of the flare loop is estimated to ∼20.3 Mm, which leads to a loop length (L) of ∼31.9 Mm when assuming

a semi-circular shape for the flare loop (cf. Tian et al., 2016; Gao et al., 2022; Li and Chen, 2022). Then

under the assumption that the oscillation is associated with a standing wave, the phase speed (vph) can be

determined by Equation (1), for instance, twice the ratio of the loop length to the quasi-period (P ), which

is about 1420 km s−1.

vph =
2L

P
. (1)

The local sound speed in the flare loop can be estimated by using vs ≈ 152
√
Te/MK (cf.

Nakariakov and Ofman, 2001; Kumar et al., 2015; Li et al., 2017a). The average temperatures at the

loop top and footpoint are estimated to 7.7 MK and 6.7 MK, which lead to the local sound speeds of

∼420 km s−1 and ∼390 km s−1, respectively. Obviously, the estimated phase speed of the flare loop is

much faster than the local sound speeds at the loop top and footpoints. Therefore, the 45-s period observed

in the M1.2 flare could not be modulated by the slow-mode wave in the flare loop (e.g., Wang et al., 2021),

although the quasi-periods less than 1 minute have been reported in flare QPPs and explained as standing

slow-mode waves (e.g., Welsh et al., 2006; Cho et al., 2016).

The estimated phase speed is much slower than that requires for the global sausage-mode wave, i.e., the

speed in the range of ∼2400−5000 km s−1 (e.g. Nakariakov et al., 2003; Melnikov et al., 2005; Tian et al.,

2016). Moreover, the global sausage-mode wave is often found in the broader and denser plasma loop,

and the necessary condition is given by Nakariakov et al. (2003) as in Equation (2).

ni
no

> (
L

0.65w
)2. (2)

Here, ni and no are the number densities inside and outside of the flare loop (or non-flare region). w
stands for the loop width, and could regard as the full width at half maximum of a Gaussian profile across

the flare loop, which is about 2.5 Mm. Thus, the density contrasty should be as high as 385 if the 45-s

QPP is modulated by the global sausage-mode wave of flare loop. The number density (ni) inside the flare

loop can be estimated by
√
EM/w, which are ∼7.5×1010 cm−3 at the loop top and ∼3.6×1010 cm−3

at the footpoint. At the non-flare region that has not plasma loops, the effective line-of-sight depth (i.e.,

w ≈ 4 × 1010 cm) is used to calculate the no (see, Zucca et al., 2014; Li et al., 2018b; Su et al., 2018a),

leading to ∼9.7×108 cm−3. Then, the density contrast is in the range of ∼37−77 from double footpoints

to the loop top. Such density contrast is rather low, compared to the necessary condition of the global

This is a provisional file, not the final typeset article 8



Li et al. Flare Quasi-Periodic Pulsation Associated with Recurrent Jets

sausage oscillation in flare loops (e.g., Nakariakov et al., 2003; Chen et al., 2015). Therefore, the quasi-

period at about 45 s seen in the M1.2 flare is impossible to be modulated by the global sausage-mode

wave of the flare loop.

In our study, the phase speed is quite close to the average speed of about 1328 km s−1 in a catalog of kink-

mode oscillations (Nechaeva et al., 2019; Nakariakov et al., 2021), which are often identified as transverse

oscillations of plasma loops (e.g., Nakariakov et al., 1999; Anfinogentov et al., 2015; Su et al., 2018a;

Li et al., 2020d; Tiwari et al., 2021). In the corona, kink oscillations are always compressive, or weakly

compressive in the long wavelength regime (Goossens et al., 2012; Nakariakov et al., 2021). On the other

hand, they could be seen as the brightness variation or intensity disturbance if the loop displacement is

not exactly perpendicular to the line-of-sight (Cooper et al., 2003; Tian et al., 2012; Wang et al., 2012;

Zimovets and Nakariakov, 2015; Antolin et al., 2017; Li et al., 2018b). In such case, the local Alfvén

speed (vA) could be determined by the phase speed (vph) and the density contrast (no/ni), and the

magnetic field strength (B) can be estimated by using the local Alfvén speed and mass density at the

loop top and footpoints, as shown in Equations 3 and 4 (e.g., Yang et al., 2020; Zimovets et al., 2021b;

Tan, 2022; Zhang et al., 2022b).

vA = vph (
2

1 + no/ni
)−

1

2 . (3)

B ≈ vA (µ0 ni mp µ̃)
1

2 . (4)

Where, µ0 and mp stand for the magnetic permittivity of free space and the Proton mass, ni is the number

density at the flare loop, and µ̃ ≈ 1.27 represents the average molecular weight in the solar corona (e.g.,

Nakariakov and Ofman, 2001; Zhang et al., 2020). Then, the mass density (ρi) could be roughly equal to

ni mp µ̃. Herein, the Alfvén speed inside the oscillating loop is estimated to about 1010 km s−1, leading

to the magnetic field strength of about 99 G and 143 G at the footpoint and loop top, respectively. These

strengths at the flare loop are consistent with previous estimations in solar flares (e.g., Qiu et al., 2009;

Li et al., 2017a, 2018b; Zimovets et al., 2021a). Our measurement and estimations support the idea that

the quasi-period of 45 s in the M1.2 flare could be modulated by the kink-mode wave of a flare loop

(Nakariakov et al., 2021).

4 SUMMARY

Based on observations recorded by Fermi, GECAM, GOES, SDO/EVE, and NoRP, we investigate the

non-stationary QPP at wavelengths of HXR, SXR, microwave and EUV during the impulsive phase of an

M1.2 flare on 2022 July 14. Combined with the imaging observation from SDO/AIA, the excitation and

modulation of the flare QPP are discussed. Our conclusions are summarized as following:

1. A quasi-period of ∼45±10 s is simultaneously detected at Fermi 11.5−102.4 keV, GECAM 25−120 keV,

GOES 1−8 Å, ESP 1−70 Å, NoRP 2 GHz and 3.75 GHz during the flare impulsive phase, i.e., from

about 04:27:50 UT to 04:32:20 UT. Our observations suggest the coexistence of nonthermal and

thermal processes in the M1.2 flare, and the 45-s QPP at multiple wavelengths could share the same

periodic process of energy release, like the repetitive magnetic reconnection (e.g., Yuan et al., 2019;

Li et al., 2021; Karampelas et al., 2022).

2. A group of recurrent jets with a periodicity of about ∼45±10 are seen in AIA 304 Å image series

during ∼04:24:50−04:32:20 UT. The onset time of the flare QPP is 180-s later than that of recurrent

jets, but they show the same quasi-period, indicating that the flare QPP is probably excited by
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recurrent jets. This observational result is different from previous findings, for instance, solar jets

were always triggered by the flare eruption (Reid et al., 2012; Lu et al., 2019), or the periodicity of

the solar flare and accompanied jets is different (e.g., Ning et al., 2022).

3. Thanks to the imaging observation from SDO/AIA at 94 Å, the quasi-period of ∼45±10 s is also seen

at two opposite footpoints of the flare loop. And the phase speed is estimated to about 1420 km s−1.

Our measurements imply that the 45-s period is most likely to be modulated by the kink-mode wave

(cf. Nakariakov et al., 2010a; Nechaeva et al., 2019).

4. Based on the kink oscillation model, the Alfvén speed inside the flare loop is estimated to

∼1010 km s−1. The magnetic field strengths are measured in the range of 99−143 G from the

footpoint to the loop top, similarly to what have estimated in solar flares at the magnitude order

of 100 G (e.g., Qiu et al., 2009; Li et al., 2018b; Zimovets et al., 2021a).
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TABLE CAPTIONS

Table 1. Observational instruments/telescopes used in this work.
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Instrument Wavelength Time cadence Description Pixel scale Observation

GOES 1−8 Å 1 s SXR - 1D

SDO/EVE/ESP 1−70 Å 0.25 s SXR - 1D

Fermi/GBM 11.5−26.6 keV ∼0.256 s SXR/HXR - 1D

26.6−102.4 keV ∼0.256 s HXR - 1D

GECAM 25−120 keV 0.5 s HXR - 1D

NoRP 2 GHz 1 s radio - 1D

3.75 GHz 1 s radio - 1D

SDO/AIA 304 Å 12 s EUV 0.6′′ 2D

94 Å 12 s EUV 0.6′′ 2D

Table 2. List of GRD numbers and their angles used in this work.

GRD number 1 2 3 6 7 8 9 10 16 17 18 19 25

Angle (◦) 72.9 43.5 72.7 82.6 52.2 31.2 52.0 79.1 64.5 39.4 34.2 62.8 49.8

NOTE–The angle refers to the incident angle of the GECAM/GRD from the Sun.

FIGURE CAPTIONS
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Figure 1. Overview of the solar flare on 2022 July 14. (A) Full-disk light curves from 04:05 UT to
04:55 UT recoded by GOES (black), EVE/ESP (red), Fermi/GBM (cyan), GECAM (blue), and NoRP

(magenta). The local light curve in AIA 94 Å (green), which is integrated over the flare region in panel (C).

(B-C) Snapshot with a FOV of 90′′×90′′ captured by SDO/AIA at wavelengths of 304 Å and 94 Å. Two
cyan lines outline the slit (S1) that contains the solar jets, and the magenta lines mark two slits (S2 and S3)
across double footpoints. The color symbols of ‘∗’ indicate their beginning points, and the black curve
represents the solar limb.
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Figure 2. X-ray light curves of the M1.2 flare. (A) Normalized HXR/SXR fluxes recorded by GECAM
(black) and Fermi/GBM (magenta and cyan), the overlaid dashed lines are their slowly varying
components. (B) The corresponding rapidly varying components that are normalized to their maximum
slow-varying components. The vertical lines indicate HXR peaks during the solar flare.
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Figure 3. Wavelet analysis results of the rapidly varying components in Figure 2. (A1-A2) The wavelet
power spectrum and global wavelet power at Fermi 11.5−26.6 keV. (B1-B2) The wavelet power spectrum
and global wavelet power at GECAM 25−120 keV. The magenta lines indicate the significance level of
99%, and the red curve outline a confidence interval.
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Figure 4. Morlet wavelet analysis results in SXR wavelengths. (A1-B1) Normalized SXR fluxes observed

by GOES 1−8 Å and ESP 1−70 Å, the overlaid dashed lines are their slowly varying components, after
multiplication by 0.95. (A2-B2) The corresponding rapidly varying components, which are normalized to
their maximum slow-varying components. (A3-B3) Morlet wavelet power spectra of the rapidly varying
components. The magenta lines indicate the significance level of 99%.
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Figure 5. Similar to Figure 4, but the Morlet wavelet analysis is performed for radio fluxes at frequencies
of NoRP 2 GHz and 3.75 GHz.
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Figure 6. Solar jets observed by SDO/AIA 304 Å. (A) Time-distance diagram along S1 (Figure 1), the
cyan symbol (∗) marks the start point. The overlaid solid cyan curve is integrated from two short cyan lines
on the left hand, and the green dashed curve represents its slowly varying component. The blue arrows
mark the recurrent jets. The vertical gold line mark the stop time in panel (B). (B-C) Morlet wavelet power
spectrum and global wavelet power. The magenta lines indicate the significance level of 99%.
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Figure 7. The M1.2 flare observed by SDO/AIA 94 Å. (A1-B1) Time-distance diagrams along S1 and
S2 (Figure 1), the magenta symbols (∗) mark their start points. The overlaid solid magenta curves are
integrated from two short magenta lines on the left hand, and the red dashed curves represent their
slowly varying components. (A2-B2) Morlet wavelet power spectra of the correspond rapidly varying
components. The magenta lines indicate the significance level of 99%. (C) Correlation coefficients
between two rapidly varying components as a function of the time lag, the vertical line mark the time
lag at 0 s.
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Figure 8. DEM analysis results of the M1.2 flare. (A) EM map integrated in the temperature range of
0.31−20 MK. Three cyan boxes outline the non-flare region (p1), loop-top region (p2), and footpoint
(p3), respectively. (B-D) DEM profiles at the non-flare region, loop top and footpoint. The EM and
DEM-weighted average temperature (Te) are also labeled in each panel.
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